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Abstract—Accurate and reliable positioning is of great 

importance for the realization of intelligent vehicles (IV). Factor 

graph optimization (FGO) has been popularized in the field of 

robotics for state estimation. As a ubiquitous sensor, the IMU is 

widely used for vehicular positioning based on the preintegration 

theory using FGO. However, the existing preintegration model 

fails to consider the earth’s rotation, which challenges the attitude 

and positioning performance of vehicles equipped with high-

precision inertial measurement units (IMU). To fill this gap, an 

accurate IMU factor that accounts for the earth's rotation rate is 

designed in this paper. First, an exact preintegration measurement 

model is derived based on a high-precision inertial navigation 

system (INS) mechanization. The proposed factor is more accurate 

and it enables the application of the FGO more suitable for 

inertial-based integrated navigation with different precision 

IMUs. In both simulation and field tests, the INS/ Global 

Navigation Satellite System (GNSS) integration, as a 

representative of inertial-based integrated navigation, is used to 

verify the performance of the proposed preintegration factor. The 

navigation results using our experimental car reveal that the 

proposed model leads to a more accurate estimation, 

outperforming the traditional preintegration models, especially in 

the aspect of attitude estimation. 

Index Terms—Factor Graph Optimization; Vehicle Navigation; 
IMU Preintegration; Inertial Navigation; Integrated Navigation. 

I. INTRODUCTION 

IGH performance of attitude and positioning is critical 

for intelligent vehicles (IV)[1][2]. An inertial 

navigation system (INS) is a promising sensor as it 

contains complete navigation information, including attitude, 

velocity, and position[3]. Besides, it has the advantages of fast 

updating frequency, all-weather operation, and high short-time 

accuracy. Thus, the inertial-based navigation approach has been 

widely applied in the field of mobile robotics [4], unmanned 

aerial vehicles(UAV)[5], and unmanned ground vehicles[6]. 

However, the errors of INS will accumulate over time[7]. 
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Exploring the suppression approach of inertial navigation errors 

has always been a research hotspot in the field of autonomous 

navigation and positioning for IV.  

The inertial-based integrated navigation assisted by other 

sensors is an alternative direction. In particular, a variety of 

sensors can be integrated with INS for different scenarios. A 

typical example is an integration of the global navigation 

satellite system (GNSS) and INS in an open place such as land 

or air [8]. Especially in intelligent vehicle navigation, 

INS/GNSS integration is a common way[9][10]. In particular, 

the work in [10] proposed to combine the kinematics and 

dynamics of the vehicles to improve the vehicular navigation 

accuracy. Besides, light detection and ranging (LiDAR) [11], 

wheel-odometry[12], and road scene maps[13] are also optional 

navigation devices in intelligent vehicles. The Kalman filter is 

an effective method to implement the above integration[14]. In 

inertial-based integrated navigation, the mechanization of INS 

is linearized by first-order error expansion in the recursive 

form. Thus, the Kalman filter based on the error state can 

achieve satisfactory and efficient state estimation. 

A. Related Works  

The IMU preintegration in FGO becomes popular: Different 

from conventional filtering-based inertial navigation, recent 

research in simultaneous localization and mapping (SLAM) has 

shown that the optimization-based method outperforms the 

filter-based method in terms of estimation accuracy[15]. It takes 

all the historical states into consideration while the filter-based 

method only considers the current state and marginalizes all the 

other previous states. Due to its superior performance, it has 

attracted more attention in multi-sensor fusion. As early as 

2012, factor graph optimization (FGO) has been applied to 

GNSS positioning [16]. The application of FGO can make 

GNSS localization more robust and accurate [17][18], which is 
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critical for intelligent vehicle navigation. With the advent of the 

preintegration theory [19], FGO is further extended to inertial-

based integrated navigation. Such as the integration of INS and 

visual [20], LiDAR [21], GNSS [22], and so on. The precision 

of the IMU factor is crucial for vehicle navigation applying 

FGO. Otherwise, the performance of inertial-based integrated 

navigation will degrade. Based on the mechanization of INS in 

[19], some improved preintegration algorithms have been 

proposed [23]-[25]. However, they cannot meet the accuracy 

requirement in high precision IMU as the rotational rate of the 

earth was ignored. 

The existing IMU preintegration model has limitations: To 

make the preintegration model more accurate, the rotational rate 

of the earth is expected to be considered. Thus, a new IMU 

preintegration with rotating earth is proposed [26]. It is 

evaluated using the INS/LiDAR integration through an 

experimental car and confirmed to outperform the traditional 

preintegration model. In [27], a simple INS/GNSS integrated 

navigation system is used to verify the accuracy of the Kalman 

filter and FGO considering the rotating earth. The results 

confirmed that the FGO can yield the same accuracy as the 

Kalman filter. However, all of these algorithms are validated 

through micro-electro-mechanical systems (MEMS) IMU. The 

performance of FGO will be challenged if a higher precision 

IMU is used, such as the fiber optic gyroscope (FOG). 

Considering the coning error under high-rate maneuvering, a 

preintegration theory based on an equivalent rotation vector is 

proposed[28]. Recently, an application of FGO on the 

INS/ultra-short baseline system (USBL) integration 

demonstrated its usefulness for FOG-based integrated 

navigation [29]. However, there are still approximate errors in 

the preintegration model [29], which challenge attitude 

performance. In short, the existing preintegration schemes have 

limitations in attitude estimation. Although the rotating earth 

has been considered in recent research [26]-[29], the remaining 

approximate errors in the model will seriously affect the attitude 

accuracy. Compared with the high-precision mechanization of 

INS in the Kalman filter, the inaccuracy of the preintegration 

model will lead to the attitude accuracy being inferior to that of 

the Kalman filter. Thus, all these show that in the field of 

inertial-based high-precision navigation and positioning, FGO 

still has a certain gap with the Kalman filter. To solve the 

problems in FGO-based integrated navigation in [27][29], a 

more accurate IMU preintegration model is highly expected. 

B. Key Contributions of This Paper  

Not only is positioning accuracy important, but attitude is 

also important for intelligent vehicles, especially when 

equipped with high-precision IMUs. To enable the application 

of the FGO method more suitable for inertial-based integrated 

navigation with different precision IMUs, an exact residual 

model and Jacobian matrix of the IMU factor have been re-

derived in this paper. It can obtain better attitude and 

positioning performance than the Kalman filter when equipped 

with high-precision IMU. 

The contributions of the paper are twofold: 

1) An accurate IMU residual model considering the 

rotation earth is rigorously derived, which could be used 

in the integrated navigation system based on high-

precision IMU for mobile robotics or intelligent vehicles. 

2) To improve the attitude estimation accuracy of FGO, a 

prior factor is proposed to suppress the oscillation error 

of the initial attitude. The proposed model can achieve 

better attitude performance than that of the traditional 

preintegration method. 

The structure of the paper is as follows. The first section is 

the introduction and includes the current research status. The 

second section introduces the IMU model and its problem in the 

traditional preintegration model. The third section derives a 

new IMU preintegration model. The fourth section verifies the 

effectiveness of the proposed preintegration model through 

simulation and field tests. The last section presents a summary. 

II. PROBLEM STATEMENT 

The coordinate systems are defined first for better 

comprehension. 

1. Body frame (b-frame): It is an orthogonal reference frame, 

which is aligned with IMU axes. 

2. Navigation frame (n-frame): It is an orthogonal reference 

frame, which is aligned with East–North–Up (E-N-U) 

geodetic axes[30]. 

3. Earth frame (e-frame): It is the earth-centered earth-fixed 

frame (ECEF)[31]. 

4. World frame (w-frame): The world frame used in [20] is 

actually the n-frame at the initial position (𝑛0 frame) in 

this paper. It is still named w-frame in the paper for 

readability. 

The output of IMU can be modeled as follows[32]. 

𝛚̃𝑖𝑏
𝑏 = 𝛚𝑖𝑏

𝑏 + 𝐛𝑔 + 𝐧𝑔

𝐟𝑏 = 𝐟𝑏 + 𝐛𝑎 + 𝐧𝑎
 (1) 

where 𝛚̃𝑖𝑏
𝑏  and 𝐟𝑏 are the actual output of the gyroscopes and 

accelerometers. 𝛚𝑖𝑏
𝑏  and 𝐟𝑏 are the ideal output of IMU. 𝐛𝑔 and 

𝐛𝑎 are the bias of the gyroscope and accelerometer. 𝐧𝑔 and 𝐧𝑎 

are the white noise, which is assumed to follow a Gaussian 

distribution as follows. 

𝐧𝑔~𝑁(0, 𝜎𝑔
2)

𝐧𝑎~𝑁(0, 𝜎𝑎
2)

 (2) 

where 𝜎𝑔
2 and 𝜎𝑎

2 are the covariance. 

In particular, the IMU kinetics used in preintegration can be 

divided into three types. The first one, which is also most 

widely used in the field of SLAM systems currently, is as 

follows[20]. 

{

𝐏̇
𝑤
= 𝐕𝑤

𝐕̇
𝑤
= 𝐂𝑏

𝑤(𝐟𝑏 − 𝐛𝑎) + 𝐠
𝑤

𝐂̇𝑏
𝑤
= 𝐂𝑏

𝑤(𝛚̃𝑖𝑏
𝑏 − 𝐛𝑔) ×

 (3) 

where 𝐏𝑤 ,  𝐕𝑤 , and 𝐂𝑏
𝑤  denote the position, velocity, and 

attitude matrix in the w-frame. 𝐠𝑤  is the gravity vector and 

(𝛚̃𝑖𝑏
𝑏 − 𝐛𝑔) × denotes the skew matrix. 

The disadvantages of this model are obvious. It ignores the 

rotating earth and the coordinate system is simplified[29]. Thus, 

it will not be analyzed in this paper. 
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The IMU kinetics model considering the rotating earth has 

been adopted in preintegration in recent years. Typical is the 

following[26][27]. 

{

𝐏̇
𝑤
= 𝐕𝑤

𝐕̇
𝑤
= 𝐂𝑏

𝑤(𝐟𝑏 − 𝐛𝑎) + 𝐠
𝑤 − 2𝛚𝑖𝑒

𝑤 × 𝐕𝑤

𝐂̇𝑏
𝑤
= 𝐂𝑏

𝑤(𝛚̃𝑤𝑏
𝑏 − 𝐛𝑔) × 𝛚̃𝑤𝑏

𝑏 = 𝛚̃𝑖𝑏
𝑏 − 𝐂𝑤

𝑏𝛚𝑖𝑒
𝑤

 (4) 

where 𝛚𝑖𝑒
𝑤 = [0 𝛚𝑖𝑒 cos L 𝛚𝑖𝑒 sin L]

𝑇 . 𝛚𝑖𝑒  is the earth’s 

rotation rate. 

Another new preintegration model is based on the following 

IMU kinetics model, where the strap-down inertial navigation 

propagation equation is defined in n-frame[29]. 

{

𝐂̇𝑏
𝑛 = 𝐂𝑏

𝑛(𝛚𝑛𝑏
𝑏 ×)

𝐕̇𝑛 = 𝐂𝑏
𝑛(𝐟𝑏 − 𝐛𝑎) − (2𝛚𝑖𝑒

𝑛 +𝛚𝑒𝑛
𝑛 ) × 𝐕𝑛 + 𝐠𝑛

𝐏̇𝑛 = 𝐌𝑝𝑣𝐕
𝑛

 (5) 

where 𝐂𝑏
𝑛 is the rotation matrix from b-frame to n-frame. 𝛚𝑛𝑏

𝑏  

is defined as follows. 

{
 
 

 
 𝛚𝑛𝑏

𝑏 = 𝛚𝑖𝑏
𝑏 − 𝐂𝑛

𝑏(𝛚𝑖𝑒
𝑛 +𝛚𝑒𝑛

𝑛 )

𝛚𝑖𝑒
𝑛 = [0 𝛚𝑖𝑒 cos L 𝛚𝑖𝑒 sin L]

𝑇

𝛚𝑒𝑛
𝑛 = [

−V𝑁

(RM + ℎ)

V𝐸

RN + ℎ

V𝐸 tan L

RN + ℎ
]
𝑇 (6) 

where 𝛚𝑛𝑏
𝑏  is the rotational angular velocity of b frame with 

respect to n frame. 𝛚𝑖𝑒
𝑛  is the rotational angular velocity of e 

frame with respect to i frame. 𝛚𝑒𝑛
𝑛  is the rotational angular 

velocity of n frame with respect to e frame. 𝛚𝑖𝑒  is the earth’s 

rotation rate. 𝐕𝑛 = [VE VN VU]
𝑇  is the velocity in the n-

frame. 𝑅𝑁 , and 𝑅𝑀  is the earth parameters[29]. 𝐏𝑛 =

[L λ ℎ]𝑇 is the absolute position represented by longitude, 

latitude and height. 𝐌𝑝𝑣 is expressed as follows. 

𝐌𝑝𝑣 =

[
 
 
 
 0

1

RM + h
0

secL

(RN + h)
0 0

0 0 1]
 
 
 
 

 (7) 

Compared (4) with (5), the IMU kinetics model in (4) is 

simplified. The centripetal acceleration to the earth caused by 

the motion of the carrier (𝛚𝑒𝑛
𝑛 × 𝐕𝑛 ) is ignored. Thus, the 

estimation accuracy of preintegration model based on (4) will 

be inferior to that of the Kalman filter in the condition of high 

speed and large scale of scenarios. 

In (5), it solves the problem of the coordinate system. 

However, the integration of earth rotation is ignored. The 

problem of approximate assumption still exists in the 

preintegration residual model, which will affect the accuracy of 

attitude heavily. Specifically, the longer the integration period, 

the lower the attitude accuracy. In addition, the prior factor is 

not considered in [29], which will make a great shock error of 

attitude in the initial stage. To solve the problems in the 

traditional preintegration models, a new IMU preintegration 

model needs to be designed. According to the analysis of the 

existing literature, the preintegration model can be divided into 

three categories. An overview of the proposed IMU 

preintegration model along with differences and comparisons 

with traditional methods is shown in Fig.1. 

 

 
Fig. 1 An overview of the proposed model along with differences and comparisons with traditional methods 

 

 

In Fig.1, it can be seen that the proposed method is a further 

extension of the previous work in [29] to solve the application 

problem of FGO in high precision inertial based integrated 

navigation. It can achieve more accurate position and attitude 

estimation. 

III. DESIGN OF NEW IMU PREINTEGRATION MODEL 

Firstly, the relationship between preintegration intervals and 
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IMU samples is defined as follows[29]. 

 

ti tj

tk+1

IMU sequence

Measurement 

sequence

tk

Δtk，k+1

Δti,j
timestamp axis

 
Fig. 2. The relationship between preintegration intervals and 

IMU samples. 
In Fig.2, the preintegration interval is from 𝑡𝑖 to  𝑡𝑗. The IMU 

update interval is from 𝑡𝑘 to  𝑡𝑘+1. In the following paper, ∆t 

shares the same meaning as ∆t𝑘,𝑘+1. 

The state of the system is defined as follows. 

𝐗 = [𝐱0, 𝐱1, 𝐱2, … 𝐱𝑛]
𝑇

𝐱𝑖 = [𝐏𝑖
𝑛, 𝐕𝑖

𝑛, 𝐂𝑏𝑖
𝑛𝑖 , 𝐛𝑎𝑖 , 𝐛𝑔𝑖]

𝑇
𝑖 ∈ [0, 𝑛]

 (8) 

where n is the size of the optimization window. 

Based on the above system state, a new IMU factor 

considering the rotating earth will be derived and detailed in the 

following. 

A. IMU error compensation in a dynamic environment 

The noncommutative error of IMU integration in a dynamic 

environment will affect the attitude and positioning accuracy. It 

is important but not considered in the preintegration model like 

[26]. 

The output of the gyroscope ( 𝛚̂𝑖𝑏
𝑏 ) after coning error 

compensation is expressed as[33]: 

𝛚̂𝑖𝑏
𝑏 = (∆𝛉𝑘 +

1

12
∆𝛉𝑘−1 × ∆𝛉𝑘) ∆t⁄  (10) 

where ∆𝛉𝑘 = 𝛚𝑖𝑏
𝑏 ∆t is the angular increment at epoch k. 

The output of the accelerometer (𝐟𝑏 ) after sculling error 

compensation is expressed as[34]. 

𝐟𝑏 = (
∆𝐯𝑘 +

1

2
∆𝛉𝑘 × ∆𝐯𝑘 +

1

12
(∆𝛉𝑘−1 × ∆𝐯𝑘 + ∆𝐯𝑘−1 × ∆𝛉𝑘)

) ∆t⁄  (11) 

where ∆𝐯k = 𝐟
𝑏∆t is the velocity increment at epoch k. 

The compensation of coning and sculling errors will improve 

the performance in a dynamic environment. 

B. IMU residuals 

Considering the rotating earth, the attitude residual will be 

derived firstly. The attitude update equation from epoch k-1 to 

k is as follows. 

𝐂𝑏𝑘
𝑛𝑘 = 𝐂𝑛𝑘−1

𝑛𝑘 𝐂𝑏𝑘−1
𝑛𝑘−1𝐂𝑏𝑘

𝑏𝑘−1 (12) 

where 𝐂𝑛𝑘−1
𝑛𝑘 = Exp(−𝛚𝑖𝑛𝑘

𝑛𝑘 ∆t)  and 𝐂𝑏𝑘
𝑏𝑘−1 = Exp(𝛚̂𝑖𝑏𝑘

𝑏𝑘 ∆t) . 

Exp is the exponential map[19]. 𝛚𝑖𝑛
𝑛 = 𝛚𝑖𝑒

𝑛 +𝛚𝑒𝑛
𝑛 . 

Thus, the integration between the preintegration interval can 

be expressed as follows. 

𝐂𝑏𝑗
𝑛𝑗
= 𝐂𝑛𝑖

𝑛𝑗
𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑗

𝑏𝑖  (13) 

where 𝐂𝑏𝑗
𝑏𝑖 = ∏ Exp(𝛚̂𝑖𝑏,𝑘

𝑏 ∆t)
𝑗
𝑘=𝑖 , 

𝐂𝑛𝑖
𝑛𝑗
= ∏ Exp(−𝛚𝑖𝑛𝑘

𝑛 ∆t)
𝑗
𝑘=𝑖 . 

𝐂𝑏𝑗
𝑏𝑖  is the attitude preintegration measurement based on the 

output of the gyroscope. 

Thus, the residual of attitude measurement is as follows. 

𝑟
𝐂𝑏𝑗
𝑏𝑖 = log ((𝐂𝑏𝑗

𝑏𝑖 )
𝑇
(𝐂𝑛𝑖

𝑛𝑗
𝐂𝑏𝑖
𝑛𝑖)

𝑇
𝐂𝑏𝑗
𝑛𝑗
) (14) 

where log is the logarithm map. 

According to (5), the velocity update equation from epoch k-

1 to k is as follows. 

𝐕𝑘
𝑛 = 𝐕𝑘−1

𝑛 + 𝐂𝑛𝑖
𝑛𝑘−1𝐂𝑏𝑖

𝑛𝑖𝐂𝑏𝑘−1
𝑏𝑖 𝐟𝑏𝑘−1∆t + ∆𝐕𝑐𝑜𝑟/𝑔(𝑘−1)

𝑛  (15) 

where ∆𝐕𝑐𝑜𝑟/𝑔(𝑘)
𝑛 = (𝐠𝑛 − (2𝛚𝑖𝑒

𝑛 +𝛚𝑒𝑛
𝑛 ) × 𝐕𝑘−1

𝑛 )∆𝑡. 

Thus, the integration between the preintegration interval can 

be expressed as follows. 

 

 

𝐕𝑗
𝑛 = 𝐕𝑗−1

𝑛 + 𝐂𝑛𝑖
𝑛𝑗−1

𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑗−1

𝑏𝑖 𝐟𝑏𝑗−1∆t + ∆𝐕𝑐𝑜𝑟/𝑔(𝑗−1)
𝑛  

= 𝐕𝑖
𝑛 +∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑘

𝑏𝑖 𝐟𝑏𝑘∆t

𝑗−1

𝑘=𝑖

+ ∆𝐕𝑐𝑜𝑟/𝑔(𝑖𝑗)
𝑛  

(16) 

where ∆𝐕𝑐𝑜𝑟/𝑔(𝑖𝑗)
𝑛 = (𝐠𝑛 − (2𝛚𝑖𝑒

𝑛 +𝛚𝑒𝑛
𝑛 ) × 𝐕𝑖

𝑛)∆𝑡𝑖,𝑗. 

The detailed derivation of (16) can be seen in Appendix A. 

According to (16), the 𝐂𝑏𝑘
𝑏𝑖 𝐟𝑏𝑘∆t (𝑘 ∈ (𝑖, 𝑗)) is the velocity 

measurement, and the residual of velocity measurement is as 

follows. 

𝑟𝐕𝒊𝒋 = 𝐕𝑗
𝑛 − 𝐕𝑖

𝑛 −∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂𝑏𝑘
𝑏𝑖 𝐟𝑏𝑘∆t

𝑗−1

𝑘=𝑖

− ∆𝐕𝑐𝑜𝑟/𝑔(𝑖𝑗)
𝑛  (17) 

In the traditional preintegration model, the velocity update 

equation is as follows[27][29]. 

𝐕𝑗
𝑛 = 𝐕𝑖

𝑛 + 𝐂𝑏𝑖
𝑛𝑗−1

∑𝐂𝑏𝑘
𝑏𝑖 𝐟𝑏𝑘∆t

𝑗−1

𝑘=𝑖

+ ∆𝐕𝑐𝑜𝑟/𝑔(𝑖𝑗)
𝑛  (18) 

In (18), it ignores the changes of 𝐂𝑛𝑖
𝑛𝑘  and uses 𝐂𝑏𝑖

𝑛𝑗−1
 to 

replace 𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖 . Thus, the error of the velocity residual will 

increase with the increase of the integration interval. 

According to (5), the position update equation at epoch k is 

as follows. 

𝐏𝑘
𝑛 = 𝐏𝑘−1

𝑛 + 𝐕𝑘−1
𝑛 ∆t +

1

2
𝐂𝑏𝑘−1
𝑛𝑘−1𝐟𝑏𝑘−1∆t2

+ ∆𝐏𝑐𝑜𝑟/𝑔(𝑘−1)
𝑛  

(19) 

where ∆𝐏𝑐𝑜𝑟/𝑔(𝑘−1)
𝑛 =

1

2
(𝐠𝑛 − (2𝛚𝑖𝑒

𝑛 +𝛚𝑒𝑛
𝑛 ) × 𝐕𝑘−1

𝑛 )∆t2. 

Thus, the integration between the preintegration interval can 

be expressed as follows. 

𝐏𝑗
𝑛 = 𝐏𝑖

𝑛 + 𝐕𝑖
𝑛∆t𝑖,𝑗 +

1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑘

𝑏𝑖 𝐟𝑏𝑘∆t2

𝑗−1

𝑘=𝑖

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂𝑏𝑘
𝑏𝑖 𝐟𝑏𝑘∆t2

𝑗−2

𝑘=𝑖

+ ∆𝐏𝑐𝑜𝑟/𝑔
𝑛  

(20) 

where ∆𝐏𝑐𝑜𝑟/𝑔
𝑛 =

1

2
(𝐠𝑛 − (2𝛚𝑖𝑒

𝑛 +𝛚𝑒𝑛
𝑛 ) × 𝐕𝑖

𝑛)∆𝑡𝑖,𝑗
2 .  

The detailed derivation of (20) can be seen in Appendix B. 

According to (20), the 𝐂𝑏𝑘
𝑏𝑖 𝐟𝑏𝑘∆t2 (𝑘 ∈ (𝑖, 𝑗)) is the position 

measurement and the residual of position measurement is as 

follows. 

𝑟𝐏𝒊𝒋 = 𝐏𝑗
𝑛 − 𝐏𝑖

𝑛 − 𝐕𝑖
𝑛∆t𝑖,𝑗 − ∆𝐏𝑐𝑜𝑟/𝑔

𝑛  

−(
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑘

𝑏𝑖 𝐟𝑏𝑘∆t2

𝑗−1

𝑘=𝑖

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂𝑏𝑘
𝑏𝑖 𝐟𝑏𝑘∆t2

𝑗−2

𝑘=𝑖

) 
(21) 
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In the traditional preintegration model, the position update 

equation is as follows[27][29]. 

𝐏𝑗
𝑛 = 𝐏𝑖

𝑛 + 𝐕𝑖
𝑛∆t𝑖,𝑗 + 𝐂𝑏𝑖

𝑛𝑗
∬ 𝐂𝑏𝑡

𝑏𝑖(𝐟𝑏 − 𝐛𝑎)𝑑𝑡
𝑡𝑗

𝑡𝑖

+ ∆𝐏𝑐𝑜𝑟/𝑔
𝑛  

(22) 

Compare (22) with (20), the position integration model has 

the same problem with that of the velocity integration model as 

(16) and (18) show. The traditional position integration model 

is inaccurate either. 

C. Incorporating Bias Updates 

In Part B, the IMU bias 𝐛̃𝑖 = (𝐛̃𝑎𝑖 , 𝐛̃𝑔𝑖) is assumed to be 

constant over a preintegration period. However, the bias is 

changed by a small value δ𝐛𝑖 = (δ𝐛𝑎𝑖 , 𝛿𝐛𝑔𝑖)  during the 

optimization. The estimated bias 𝐛𝑖 = (𝐛𝑎𝑖 , 𝐛𝑔𝑖)  can be 

computed as follows. 

𝐛𝑎𝑖 = 𝐛̃𝑎𝑖 + δ𝐛𝑎𝑖
𝐛𝑔𝑖 = 𝐛̃𝑔𝑖 + δ𝐛𝑔𝑖

 (23) 

Substitute (23) into the residual equations and update the 

measurements using the first-order expansion. The attitude 

residual can be updated as. 

𝑟
𝐂𝑏𝑗
𝑏𝑖 = log ((𝐂𝑏𝑗

𝑏𝑖 (𝐛𝑖))
𝑇

(𝐂𝑛𝑖
𝑛𝑗
𝐂𝑏𝑖
𝑛𝑖)

𝑇
𝐂𝑏𝑗
𝑛𝑗
) (24) 

where 

𝐂𝑏𝑗
𝑏𝑖 (𝐛𝑖) = 𝐂̃𝑏𝑗

𝑏𝑖Exp(
𝜕𝐂̃𝑏𝑗

𝑏𝑖

𝜕𝐛̃𝑔𝑖
δ𝐛𝑔𝑖) (25) 

where 
𝜕𝐂𝑏𝑗

𝑏𝑖(𝐛̃𝑖)

𝜕𝐛̃𝑔𝑖
 denotes the Jacobian with respect to 𝐛̃𝑔𝑖 . Its 

detailed expression can be seen in Appendix C. 𝐂̃𝑏𝑗
𝑏𝑖 =

∏ Exp(𝛚̂𝑖𝑏𝑘
𝑏𝑘 ∆t − 𝐛̃𝑔𝑖∆t)

𝑗
𝑘=𝑖 . 

The velocity residual can be updated as. 

𝑟𝐕𝒊𝒋 = 𝐕𝑗
𝑛 − 𝐕𝑖

𝑛 − ∆𝐕𝑐𝑜𝑟/𝑔(𝑖𝑗)
𝑛  

−∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂̃𝑏𝑘
𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖)∆t

𝑗−1

𝑘=𝑖

 

−∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂̃𝑏𝑘
𝑏𝑖 ∆t

𝑗−1

𝑘=𝑖

δ𝐛𝑎𝑖  

−∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂̃𝑏𝑘
𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖) ×

𝜕𝐂̃𝑏𝑘
𝑏𝑖

𝜕𝐛̃𝑔𝑖
∆t

𝑗−1

𝑘=𝑖

δ𝐛𝑔𝑖 

(26) 

The position residual can be updated as. 

𝑟𝐏𝒊𝒋 = 𝐏𝑗
𝑛 − 𝐏𝑖

𝑛 − 𝐕𝑖
𝑛∆t𝑖,𝑗 − ∆𝐏𝑐𝑜𝑟/𝑔

𝑛 − 𝐋1 − 𝐋2δ𝐛𝑎𝑖
− 𝐋3δ𝐛𝑔𝑖 

(27) 

where 

𝐋1 =

(

 
 
 
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂̃𝑏𝑘

𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖)∆t
2

𝑗−1

𝑘=𝑖

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂̃𝑏𝑘
𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖)∆t

2

𝑗−2

𝑘=𝑖 )

 
 
 

 

𝐋2 = (
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂̃𝑏𝑘

𝑏𝑖 ∆t2

𝑗−1

𝑘=𝑖

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂̃𝑏𝑘
𝑏𝑖 ∆t2

𝑗−2

𝑘=𝑖

) 

(28) 

𝐋3 =

(

 
 
 
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂̃𝑏𝑘

𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖) ×
𝜕𝐂̃𝑏𝑘

𝑏𝑖

𝜕𝐛̃𝑔𝑖
∆t2

𝑗−1

𝑘=𝑖

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂̃𝑏𝑘
𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖) ×

𝜕𝐂̃𝑏𝑘
𝑏𝑖

𝜕𝐛̃𝑔𝑖
∆t2

𝑗−2

𝑘=𝑖 )

 
 
 

 

Thus, the new IMU residual has been derived based on (24), 

(26), and (28). 

The Jacobians of residual errors can be seen in Appendix C. 

D. Noise propagation 

The preintegration noise is defined as. 

𝛈𝑖𝑗 = [𝛿𝛟𝑖𝑗
𝑇 𝛿𝐯𝑖𝑗

𝑇 𝛿𝐩𝑖𝑗
𝑇 𝛿𝐛𝑎

𝑇 𝛿𝐛𝑔
𝑇]
𝑇
 (29) 

Then, the noise propagation can be represented as follows. 

𝛈𝑖𝑗 = 𝐀𝑗−1𝛈𝑖𝑗−1 + 𝐁𝑗−1𝛈𝑗−1 (30) 

where 𝛈𝑗−1 = [𝐧𝑎
𝑇 𝐧𝑔

𝑇]
𝑻
, 

𝐀𝑗−1 =

[
 
 
 
 
 𝐂̃𝑏𝑗−1
𝑏𝑗

𝟎 𝟎 𝟎 −𝐉r
𝑗−1
∆t

𝐇𝐯𝛟 𝐈 𝟎 −𝐂̃𝑏𝑗−1
𝑏𝑖 ∆t 𝟎

𝟎 𝐈∆t 𝐈 𝟎 𝟎
𝟎 𝟎 𝟎 𝐈 𝟎
𝟎 𝟎 𝟎 𝟎 𝐈 ]

 
 
 
 
 

, 

𝐁𝑗−1 =

[
 
 
 
 
 𝟎 𝐉𝒓

𝑗−1
∆t

𝐂̃𝑏𝑗−1
𝑏𝑖 ∆t 𝟎

𝟎 𝟎
𝟎 𝟎
𝟎 𝟎 ]

 
 
 
 
 

, 

where the term 𝐉r
𝑗−1

≐ 𝐉r
𝑗−1
(𝛚̂𝑖𝑏𝑗−1

𝑏𝑗−1
∆t − 𝐛̃𝑔𝑖∆t)  is the right 

Jacobian of SO(3)[19][35]. 𝐇𝐯𝛟 = −𝐂̃𝑏𝑗−1
𝑏𝑖 (𝐟𝑏𝑗−1 − 𝐛̃𝑎𝑖) × ∆t. 

Thus, the covariance matrix (𝚺𝑖𝑗)  of the preintegration 

measurement noise can be computed as. 

𝚺𝑖𝑗 = 𝐀𝑗−1𝚺𝑖𝑗−1𝐀𝑗−1
𝑇 + 𝐁𝑗−1𝚺𝐛𝐁𝑗−1

𝑇  (31) 

where 𝚺𝒃 = [
𝜎𝑎
2 𝟎

𝟎 𝜎𝑔
2] is the covariance of IMU noise. 

IV. EXPERIMENT TEST FOR INS/GNSS INTEGRATION 

The INS/GNSS integration, as a representative of inertial-

based integrated navigation, is used to verify the performance 

of FGO using the new preintegration model in this section. A 

loosely coupled INS/GNSS integration model based on position 

matching is adopted in the test. The graph model of the 

integrated navigation system in FGO is as Fig.3 shows. 

 
Fig. 3 Graph model of the implemented INS/GNSS integration 

The state-of-art preintegration algorithms considering the 
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rotating earth are compared in the paper. Symbols used for the 

experiments are as follows: 

KF: Short for the error state-based Kalman filter. 

PI1: Short for the preintegration model 1 described in [26]. 

It is based on the IMU kinetics as (4) shows. 

PI2: Short for the preintegration model 2 described in [29]. 

It is based on the IMU kinetics as (5) shows. 

Proposed: The proposed new preintegration model is 

described in Section III. 

A. Simulation test 

As mentioned above, the INS/GNSS integration is adopted 

to verify the performance of FGO and KF. The simulated 

trajectory is a circle with a radius of about 10,000m. The 

trajectory is as Fig.4 shows. 

 
Fig. 4 The simulated trajectory 

The sensor data is generated according to the trajectory. A 

navigation-grade IMU is simulated in the test, which includes a 

triad of gyroscopes (bias 0.01 ° ℎ⁄ , random walk 0.001 ° √ℎ⁄ ) 

and accelerometer (bias 100 μg, random walk 50𝑢𝑔 √𝐻𝑧⁄ ) 

[36]. A first-order Markov process is added to the GNSS value. 

Its  correlation time is 3,600s and standard deviation is 0.1m 

[37]. Thus, the process noise and measurement noise of Kalman 

filter are initialized as 𝐐 = diag[8.5𝑒 − 14𝐈1×3, 9.6𝑒 −
9𝐈1×3], 𝐑 = diag(0.01,0.01,0.01). The vehicle speed is set as 

20m/s in Fig.3. The output frequency of GNSS is 1Hz. The 

initial navigation parameters are set as follows: 

The initial position error: [1 1 3]Tm; 

The initial velocity error: [0.1 0.1 0.1]Tm/s; 

The initial attitude error: [0.1° 0.1° 0.5°]
T. 

To make the results more convincing, 50 independent 

experiments are conducted in each simulation scenario. 

Statistics from 50 experiments will be used for comparison. The 

RMSE of the Monte Carlo simulation test is used as the 

performance metric. It is defined as follows [38]. 

RMSE𝑝𝑜𝑠(𝑘)

= √1 𝑀⁄ ∑ ((𝑥𝑘
𝑠 − 𝑥̂𝑘

𝑠)2 + (𝑦𝑘
𝑠 − 𝑦̂𝑘

𝑠)2 + (𝑧𝑘
𝑠 − 𝑧̂𝑘

𝑠)2)
𝑀

𝑠=1
 
(32) 

RMSEroll,pitch or yaw(𝑘) = √1 𝑀⁄ ∑ (x𝑘
𝑠 − 𝑥̂𝑘

𝑠)2
𝑀

𝑠=1
 

where 𝑥𝑘
𝑠 is the true value and 𝑥̂𝑘

𝑠 is the estimated value at s-th 

Monte Carlo run at epoch k. x𝑘
𝑠  denotes the value of pitch, roll, 

or yaw at s-th Monte Carlo run at epoch k. 

Thus, the attitude is compared as Fig.5 shows. 

 
Fig. 5 Comparison of attitude error 

In Fig.5, PI1 and the proposed method add a prior factor to 

the graph model. Thus, the initial attitude error changes 

smoothly. Although the precision of PI2 is better than that of 

PI1, due to the lack of prior factors, the attitude error of PI2 

method oscillates obviously in the initial stage as the blue area 

shows. Because of the inaccurate INS mechanization, the roll 

and pitch errors of the traditional preintegration models (PI1 

and PI2) are obviously larger than that of the proposed method 

and KF method. The proposed method yields the same accuracy 

as KF. The attitude is observed indirectly. Thus, inaccurate 

preintegration models will affect attitude accuracy seriously. 

The position and velocity errors are compared as Fig.6 and 

Fig.7 show. 

 
Fig. 6 Comparison of position error 
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Fig. 7 Comparison of velocity error 

In Fig.6 and Fig.7, the position and velocity estimation 

accuracy based on FGO is better than that of the Kalman filter. 

Kalman filter is an optimal estimator under the assumption of 

Gaussian noise. FGO usually has higher estimation accuracy 

than the Kalman filter in the condition of non-Gaussian noise. 

Due to the accurate IMU model, the proposed method 

outperforms the traditional FGO methods in terms of position 

errors. 

The above simulations show that the proposed method have 

superior performance than the traditional FGO and KF methods 

in terms of attitude, velocity and position estimation accuracy. 

To show the superiority of the proposed algorithm in any 

condition, different simulation scenarios are used to verify the 

performance of these algorithms in the following. 

 

Test 1: Performance comparison under different GNSS 

update frequencies 

In this test, the influence of update frequency on algorithm 

performance is compared. The vehicle speed is also set as 20m/s 

in Fig.4. The initial navigation parameters are the same as 

above. Different measurement period of GNSS is set 

(5s,15s,25s, and 35s). To analyze the results more 

quantitatively, the average root-mean-square error (ARMSE) of 

the Monte Carlo simulation test is used, which is calculated 

according to the following. 

RMSE𝑚 = √
1

𝑁
∑ (𝑥̂𝑘 − x𝑘)

2
𝑁

𝑘=1

ARMSE =
1

𝑀
∑ RMSE𝑚

𝑀

𝑚=1

 (33) 

where x𝑘 is the true value at epoch i. 𝑥̂𝑘 is the estimated value 

of attitude and position. N is the total number of sampled data 

and M is the numbers of Monte Carlo simulation test. 

Besides, the mean value of the average location error (ALE) 

is also used as the performance metrics. It is defined as follows. 

ALE𝑚 =
1

𝑁
∑ √(𝑥̂𝑘 − 𝑥𝑘)2 + (𝑦̂𝑘 − 𝑦𝑘)

2
+ (𝑧̂𝑘 − 𝑧𝑘)2

𝑁

𝑘=1

MALE =
1

𝑀
∑ ALE𝑚

𝑀

𝑚=1

 (34) 

where 𝑥𝑘, 𝑦𝑘 , and 𝑧𝑘 denote the position in the x-axis, y-axis, 

and z-axis. 

Note that the attitude error needs a period of time to 

converge. Thus, the RMSE of attitude error in the stable phase 

(1100-3200s) was calculated. The comparison of attitude error 

is shown as Fig.8. 

 
Fig. 8 Comparison of attitude error under different periods 

It can be seen from Fig.8 that the attitude accuracy of PI1 

method is the worst. Due to the inaccuracy of the preintegration 

model in PI2, such as the roll and yaw error, it becomes larger 

as the period increases. The proposed method always yields the 

same accuracy as KF or a little bit better. 

The comparison of position and velocity error is shown as 

Fig.9 and Fig.10.  

 
Fig. 9 Comparison of position error under different frequency 
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Fig. 10 Comparison of velocity error under different 

frequency 

It can be seen from Fig.9 and Fig.10 that the position and 

velocity estimation accuracy of the proposed method 

outperforms the traditional methods due to the exact 

preintegration model.  

Due to the inaccuracy of the preintegration model, the longer 

the integration time, the more inaccurate the IMU residual. 

Thus, the traditional preintegration methods will show bad 

performance under long time integration. The above 

simulations confirm that the traditional methods suffer from the 

influence of integration time. However, the proposed method 

can hold the estimation accuracy no matter how long the 

integration time is. 

Test 2: Performance comparison under different trajectory 

radii 

The IMU kinetics in (4) is simplified. The preintegration 

model based on the IMU kinetics in (4) is only suitable for 

navigation in a small range of scenarios. As the range of motion 

increases, so does the positioning error. Thus, different 

trajectory radii are set in this test as Fig.4 shows. The trajectory 

radii are set as 1,000m, 10,000m, 20,000m and 30,000m 

respectively. Besides, the vehicle speed is also set as 20m/s. The 

initial navigation parameters are the same as above. The 

measurement period of GNSS is set as 5s. To compare the 

results more clearly, the difference of ARMSE (DARMSE) and 

MLE (DMLE) between the traditional methods and the 

proposed method is used as a performance metric. This means 

the magnitude of the error relative to the proposed method will 

be used to indicate the performance. The larger the DARMSE, 

the worse the performance of the method. If DARMSE is less 

than 0, the performance of the method is better than the 

proposed method. 

The comparison of attitude error is shown in Fig.11. 

 
Fig. 11 Comparison of attitude error under different trajectory 

radii 

In Fig.11, the proposed method indicates a horizontal line at 

zero. The lines above zero mean a worse performance than the 

proposed method. It is obvious that the attitude accuracy of PI1 

method is the worst. As the range of motion increases, the 

performance of attitude estimation becomes worse and worse. 

At the same time, the proposed method always yields the best 

performance. 

The comparison of position and velocity error is shown in 

Fig.12 and Fig.13. 

 
Fig. 12 Comparison of position error under different trajectory 

radii 
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Fig. 13 Comparison of velosity error under different trajectory 

radii 

In Fig.12 and Fig.13, the proposed method indicates a 

horizontal line at zero. The lines above zero mean a worse 

performance than the proposed method. The positioning 

accuracy of the PI1 method deteriorates with the increase of 

radius. Thus, the preintegration model in PI1 is only suitable for 

navigation in a small range of scenarios. The proposed 

preintegration model always yields the best performance no 

matter the motion ranges. 

This test confirms that the accuracy of preintegration will 

affect the positioning accuracy of integrated navigation, 

especially in the case of a large-scale scenarios. The above 

experiments confirm that 1) the traditional IMU preintegration 

model will affect the positioning and attitude accuracy of 

inertial-based integrated navigation when vehicles are equipped 

with high-grade IMU. 2) The proposed method is optimal in 

various environments. 

B. Field test 

In the previous subsection, the superiority of the proposed 

algorithm is proved by simulation experiments. In this 

subsection, the performance of the FGO method in practical 

applications will be validated using our experimental car. 

The experimental car is equipped with a FOG IMU as Fig.14 

shows. A GNSS antenna is mounted on top of the car, which is 

made by NovAtel. The PHINS, a high-grade navigation system 

which is made by the iXblue corporation, can output positions 

and attitudes that we consider as ground truth. The yaw 

accuracy of PHINS is less than 0.1°secL (L is the latitude of the 

vehicle). The pitch and roll accuracy of PHINS is less than 

0.01° . The bias drift of the gyroscope is 0.02 ° ℎ⁄  and the 

angular random walk is 0.005 ° √ℎ⁄ . The bias drift of the 

accelerometer is 500 μg and the random walk is 50𝑢𝑔 √𝐻𝑧⁄ . 

The output frequency of GNSS and IMU are 1Hz and 200Hz 

respectively. 

 
Fig. 14 A schematic of the experimental car 

The trajectory of the car is shown in Fig.15. 

 
Fig. 15 Trajectory of the car in Google Earth 

The comparison of position and velocity error is shown in 

Fig.16 and Fig.17. 

 
Fig. 16 Comparison of position error in field test 
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Fig. 17 Comparison of velocity error in field test 

It can be seen from Fig.16 and Fig.17 that PI1 method 

performs the worst. As the IMU kinetics is simplified in PI1, its 

positioning accuracy is inferior to that of PI2 and the proposed 

method in a dynamic environment. Although an accurate INS 

mechanization is considered in PI2, the integration of erath 

rotation is ignored, resulting in the estimation accuracy is less 

than KF and the proposed method.To analyze the position error 

quantitatively, RMSE and ALE are used as performance 

metrics. The statistical results are listed in Table I. 

Table I 

Comparison of positioning accuracy in field test 

 EPE(m) NPE(m) UPE(m) ALE(m) 

PI1 0.313 0.300 0.343 0.484 

PI2 0.295 0.299 0.232 0.402 

KF 0.299 0.286 0.254 0.413 

The Proposed 0.286 0.285 0.230 0.388 

where NPE, EPE, and UPE denote the RMSE of position in 

north, east, and up directions. 

The proposed method yields the best performance among 

these methods. The position accuracy is improved by 19.8%, 

and 3.6% respectively compared with the PI1 and PI2 methods 

in terms of ALE. 

The comparison of attitude error is shown in Fig.18. 

 

Fig. 18 Comparison of attitude error in field test 

In Fig.18, due to the lack of prior factor, the attitude error of 

PI2 method oscillates obviously in the initial stage as the blue 

area shows, which is the same as the simulation results. The 

proposed method yields comparable attitude accuracy as KF or 

a little bit better. Due to the exact preintegration model, it 

outperforms the traditional FGO methods. 

The field experiments above verify the effectiveness of the 

proposed method in practical application. It shows that the 

proposed preintegration model eliminates the accuracy gap 

between FGO and KF in terms of applying high-precision IMU.  

V. CONCLUSION 

Inertial-based integrated navigation using FGO technology 

has been popularized in the field of intelligent vehicles. 

However, little attention has been paid to the accuracy of 

preintegration models. The problems with traditional methods 

are: 

 1) The rotating earth is often ignored in the IMU 

preintegration, resulting in FGO being only applicable to low-

precision IMUs. 

2) The integration of the rotating earth is ignored, resulting 

in reduced attitude error. 

This paper focuses on the application of FGO in high-grade 

IMU. An exact IMU preintegration model is derived based on 

high-precision INS mechanization. It unifies the mathematical 

expressions for different precision levels of IMU, hence 

enabling the application of the FGO method more suitable for 

inertial-based integrated navigation with different precision 

IMUs. The method is compared against the state-of-the-art. 

Simulations and field tests show that the proposed method has 

obvious advantages in terms of the estimation accuracy of 

positioning and attitude. It broadens the application of FGO in 

inertial-based integrated navigation. In the future, FGO can be 

applied for long-term navigation, e.g. for autonomous 

underwater vehicles (AUV), and unmanned aerial vehicles 

equipped with high-grade inertial sensors. The interference of 

complex environment will be another challenge in the 

application of FGO method. Robust optimization methods will 

be the focus of further research in the future. 

APPENDIX 

A. Derivation of 𝑽𝑗
𝑛 

According to (15), the velocity update equation from epoch 

j-1 to j is as follows. 

𝐕𝑗
𝑛 = 𝐕𝑗−1

𝑛 + 𝐂𝑛𝑖
𝑛𝑗−1

𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑗−1

𝑏𝑖 𝐟𝑏𝑗−1∆t + ∆𝐕𝑐𝑜𝑟/𝑔(𝑗−1)
𝑛  (35) 

The velocity update equation from epoch j-2 to j-1 is as 

follows. 

𝐕𝑗−1
𝑛 = 𝐕𝑗−2

𝑛 + 𝐂𝑛𝑖
𝑛𝑗−2

𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑗−2

𝑏𝑖 𝐟𝑏𝑗−2∆t + ∆𝐕𝑐𝑜𝑟/𝑔(𝑗−2)
𝑛  (36) 

Substitute (36) into (35) and iterate until 𝐕𝑖
𝑛 . It can be 

obtained. 
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𝐕𝑗
𝑛 = 𝐕𝑗−1

𝑛 + 𝐂𝑛𝑖
𝑛𝑗−1

𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑗−1

𝑏𝑖 𝐟𝑏𝑗−1∆t + ∆𝐕𝑐𝑜𝑟/𝑔(𝑗−1)
𝑛  

= 𝐕𝑗−2
𝑛 + 𝐂𝑛𝑖

𝑛𝑗−2
𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑗−2

𝑏𝑖 𝐟𝑏𝑗−2∆t + ∆𝐕𝑐𝑜𝑟/𝑔(𝑗−2)
𝑛

+ 𝐂𝑛𝑖
𝑛𝑗−1

𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑗−1

𝑏𝑖 𝐟𝑏𝑗−1∆t

+ ∆𝐕𝑐𝑜𝑟/𝑔(𝑗−1)
𝑛  

= ⋯⋯  

= 𝐕𝑖
𝑛 +∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑘

𝑏𝑖 𝐟𝑏𝑘∆t

𝑗−1

𝑘=𝑖

+ ∆𝐕𝑐𝑜𝑟/𝑔(𝑖𝑗)
𝑛  

(37) 

B. Derivation of 𝑷𝑗
𝑛 

According to (19), the position update equation from epoch 

j-1 to j is as follows. 

𝐏𝑗
𝑛 = 𝐏𝑗−1

𝑛 + 𝐕𝑗−1
𝑛 ∆t +

1

2
𝐂𝑏𝑗−1
𝑛𝑗−1

𝐟𝑏𝑗−1∆t2 + ∆𝐏𝑐𝑜𝑟/𝑔(𝑗−1)
𝑛  (38) 

The position update equation from epoch j-2 to j-1 is as 

follows. 

𝐏𝑗−1
𝑛 = 𝐏𝑗−2

𝑛 + 𝐕𝑗−2
𝑛 ∆t +

1

2
𝐂𝑏𝑗−2
𝑛𝑗−2

𝐟𝑏𝑗−2∆t2

+ ∆𝐏𝑐𝑜𝑟/𝑔(𝑗−2)
𝑛  

(39) 

Substitute (36) (39) into (38) and iterate until 𝐏𝑖
𝑛. It can be 

obtained. 

𝐏𝑗
𝑛 = 𝐏𝑗−1

𝑛 + 𝐕𝑗−1
𝑛 ∆t +

1

2
𝐂𝑏𝑗−1
𝑛𝑗−1

𝐟𝑏𝑗−1∆t2 + ∆𝐏𝑐𝑜𝑟/𝑔(𝑗−1)
𝑛  

= 𝐏𝑗−2
𝑛 + 𝐕𝑗−2

𝑛 ∆t +
1

2
𝐂𝑏𝑗−2
𝑛𝑗−2

𝐟𝑏𝑗−2∆t2 + ∆𝐏𝑐𝑜𝑟/𝑔(𝑗−2)
𝑛

+ (𝐕𝑗−2
𝑛 + 𝐂𝑏𝑗−2

𝑛𝑗−2
𝐟𝑏𝑗−2∆t

+ ∆𝐕𝑐𝑜𝑟/𝑔(𝑗−2)
𝑛 )∆t +

1

2
𝐂𝑏𝑗−1
𝑛𝑗−1

𝐟𝑏𝑗−1∆t2

+ ∆𝐏𝑐𝑜𝑟/𝑔(𝑗−1)
𝑛  

= ⋯⋯  

= 𝐏𝑖
𝑛 + 𝐕𝑖

𝑛∆t𝑖,𝑗 +
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂𝑏𝑘

𝑏𝑖 𝐟𝑏𝑘∆t2

𝑗−1

𝑘=𝑖

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂𝑏𝑘
𝑏𝑖 𝐟𝑏𝑘∆t2

𝑗−2

𝑘=𝑖

+ ∆𝐏𝑐𝑜𝑟/𝑔
𝑛  

(40) 

C. Jacobians of residual errors 

1) Jacobians of 𝑟𝐏𝒊𝒋 

The Jacobian with respect to 𝜙𝑖 is as follows 

𝜕𝑟𝐏𝒊𝒋

𝜕𝜙𝑖
=
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖(𝐂̃𝑏𝑘

𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖)∆t
2)

𝑗−1

𝑘=𝑖

× 

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖(𝐂̃𝑏𝑘
𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖)∆t

2) ×

𝑗−2

𝑘=𝑖

 

+
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖(𝐂̃𝑏𝑘

𝑏𝑖 ∆t2δ𝐛𝑎𝑖) ×

𝑗−1

𝑘=𝑖

 

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖(𝐂̃𝑏𝑘
𝑏𝑖 ∆t2δ𝐛𝑎𝑖)

𝑗−2

𝑘=𝑖

× 

+
1

2
∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖 (𝐂̃𝑏𝑘

𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖) ×
𝜕𝐂̃𝑏𝑘

𝑏𝑖

𝜕𝐛̃𝑔𝑖
∆t2δ𝐛𝑔𝑖) ×

𝑗−1

𝑘=𝑖

 

(41) 

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖𝐂̃𝑏𝑘
𝑏𝑖 ((𝐟𝑏𝑘 − 𝐛̃𝑎𝑖) ×

𝜕𝐂̃𝑏𝑘
𝑏𝑖

𝜕𝐛̃𝑔𝑖
∆t2δ𝐛𝑔𝑖)

𝑗−2

𝑘=𝑖

× 

The Jacobians with respect to the rest of states are as follows 

𝜕𝑟𝐏𝒊𝒋

𝜕𝑝𝑖
= −𝐂𝑏𝑖

𝑛𝑖
𝜕𝑟𝐏𝒊𝒋

𝜕𝑝𝑗
= −𝐂𝑏𝑗

𝑛𝑗
 

𝜕𝑟𝐏𝒊𝒋

𝜕𝑣𝑖
= −𝐈3∆t𝑖,𝑗 +

1

2
∆𝑡𝑖,𝑗

2 (2𝛚𝑖𝑒
𝑛 +𝛚𝑒𝑛

𝑛 ) × 

𝜕𝑟𝐏𝒊𝒋

𝜕𝑣𝑗
= 𝟎3

𝜕𝑟𝐏𝒊𝒋

𝜕𝜙𝑗
= 𝟎3 

𝜕𝑟𝐏𝒊𝒋

𝜕δ𝐛𝑎𝑖
= −𝐋2

𝜕𝑟𝐏𝒊𝒋

𝜕δ𝐛𝑔𝑖
= −𝐋3 

(42) 

2) Jacobians of 𝑟𝐕𝒊𝒋 

The Jacobian with respect to 𝜙𝑖 is as follows 

𝜕𝑟𝐕𝒊𝒋

𝜕𝜙𝑖
=∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖(𝐂̃𝑏𝑘

𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖)∆t) ×

𝑗−1

𝑘=𝑖

 

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖(𝐂̃𝑏𝑘
𝑏𝑖 ∆tδ𝐛𝑎𝑖)

𝑗−1

𝑘=𝑖

× 

+∑𝐂𝑛𝑖
𝑛𝑘𝐂𝑏𝑖

𝑛𝑖 (𝐂̃𝑏𝑘
𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖) ×

𝜕𝐂̃𝑏𝑘
𝑏𝑖

𝜕𝐛̃𝑔𝑖
∆tδ𝐛𝑔𝑖) ×

𝑗−1

𝑘=𝑖

 

(43) 

The Jacobians with respect to the rest of states are as follows 

𝜕𝑟𝐕𝒊𝒋

𝜕𝑝𝑖
= 𝟎3

𝜕𝑟𝐏𝒊𝒋

𝜕𝑝𝑗
= 𝟎3 

𝜕𝑟𝐏𝒊𝒋

𝜕𝑣𝑖
= −𝐈3 + (2𝛚𝑖𝑒

𝑛 +𝛚𝑒𝑛
𝑛 ) × ∆𝑡𝑖,𝑗 

𝜕𝑟𝐏𝒊𝒋

𝜕𝑣𝑗
= 𝐈3

𝜕𝑟𝐏𝒊𝒋

𝜕𝜙𝑗
= 𝟎3 

𝜕𝑟𝐏𝒊𝒋

𝜕δ𝐛𝑎𝑖
= −∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂̃𝑏𝑘

𝑏𝑖 ∆t

𝑗−1

𝑘=𝑖

 

𝜕𝑟𝐏𝒊𝒋

𝜕δ𝐛𝑔𝑖
= −∑𝐂𝑛𝑖

𝑛𝑘𝐂𝑏𝑖
𝑛𝑖𝐂̃𝑏𝑘

𝑏𝑖 (𝐟𝑏𝑘 − 𝐛̃𝑎𝑖) ×
𝜕𝐂̃𝑏𝑘

𝑏𝑖

𝜕𝐛̃𝑔𝑖
∆t

𝑗−1

𝑘=𝑖

 

(44) 

3) Jacobians of 𝑟
𝐂𝑏𝑗
𝑏𝑖  

The Jacobian with respect to 𝜙𝑖 is as follows 

𝜕𝑟
𝐂𝑏𝑗
𝑏𝑖

𝜕𝜙𝑖
= −𝐉𝑟

−1 (𝑟
𝐂𝑏𝑗
𝑏𝑖(𝐂𝑏𝑖

𝑛𝑖)) (𝐂𝑏𝑗
𝑛𝑗
)
𝑇
𝐂𝑛𝑖
𝑛𝑗
𝐂𝑏𝑖
𝑛𝑖 

 

(45) 

where 𝐉𝑟
−1 (𝑟

𝐂𝑏𝑗
𝑏𝑖(𝐂𝑏𝑖

𝑛𝑖))  is the inverse of the right Jacobian 

𝐉𝑟 (𝑟𝐂𝑏𝑗
𝑏𝑖(𝐂𝑏𝑖

𝑛𝑖)). 

The Jacobians with respect to the rest of states are as follows 

𝜕𝑟
𝐂𝑏𝑗
𝑏𝑖

𝜕𝑝𝑖
= 𝟎3

𝜕𝑟
𝐂𝑏𝑗
𝑏𝑖

𝜕𝑝𝑗
= 𝟎3

𝜕𝑟
𝐂𝑏𝑗
𝑏𝑖

𝜕δ𝐛𝑎𝑖
= 𝟎3 

𝜕𝑟
𝐂𝑏𝑗
𝑏𝑖

𝜕𝜙𝑗
= 𝐉𝑟

−1 (𝑟
𝐂𝑏𝑗
𝑏𝑖(𝐂𝑏𝑗

𝑛𝑗
)) 

(46) 
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𝜕𝑟

𝐂𝑏𝑗
𝑏𝑖

𝜕𝑣𝑖
= 𝟎3

𝜕𝑟
𝐂𝑏𝑗
𝑏𝑖

𝜕𝑣𝑗
= 𝟎3 

𝜕𝑟
𝐂𝑏𝑗
𝑏𝑖

𝜕δ𝐛𝑔𝑖

= −𝐉𝑟
−1 (𝑟

𝐂𝑏𝑗
𝑏𝑖(δ𝐛𝑔𝑖)) Exp (𝑟𝐂𝑏𝑗

𝑏𝑖(δ𝐛𝑔𝑖))

𝑇

𝐉𝑟
𝑏
𝜕𝐂̃𝑏𝑗

𝑏𝑖

𝜕𝐛̃𝑔𝑖
 

where 𝐉𝑟
𝑏 = 𝐉𝑟 (

𝜕𝐂̃𝑏𝑗
𝑏𝑖

𝜕𝐛̃𝑔𝑖
δ𝐛𝑔𝑖). 
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